Fibroblast growth factor receptor 1 is a key regulator of early adipogenic events in human preadipocytes.
نویسندگان
چکیده
Cell number is an important determinant of adipose tissue mass, and the coordinated proliferation and differentiation of preadipocytes into mature lipid-laden adipocytes underpins the increased adipose tissue mass associated with obesity. Despite this, the molecular cues governing such adipose tissue expansion are poorly understood. We previously reported that fibroblast growth factor-1 (FGF-1) promotes both proliferation and differentiation of human preadipocytes and that the major adipogenic effect of FGF-1 occurs during proliferation, priming the cells for adipose conversion. In the current study, we examined whether this effect was linked to the mitogenic action of FGF-1 by investigating the mitogenic and adipogenic potential of other growth factors, platelet-derived growth factor (PDGF; AA and BB) and vascular endothelial growth factor. Although PDGF-AA and PDGF-BB showed comparable mitogenic potential to FGF-1, only FGF-1 treatment resulted in priming and subsequent differentiation. Pharmacological inhibition of FGF receptor (FGFR) tyrosine kinase activity, using the FGFR-specific inhibitors PD-173074 and SU-5402, revealed an obligate requirement for FGFR activity in these processes. A combination of biochemical and genetic approaches revealed an important role for FGFR1. Knock down of FGFR1 expression by small-interfering RNA reduced FGF-1-stimulated signaling events, proliferation, and priming. Together these data highlight the unique nature of the role of FGF-1 during the earliest stages of adipogenesis and establish a role for FGFR1 in human adipogenesis, identifying FGFR1 as a potential therapeutic target to reduce obesity.
منابع مشابه
Fibroblast growth factor 1: a key regulator of human adipogenesis.
Obesity, with its related problems, is recognized as the fastest growing disease epidemic facing the world, yet we still have limited insight into the regulation of adipose tissue mass in humans. We have previously shown that adipose-derived microvascular endothelial cells (MVECs) secrete a factor(s) that increases proliferation of human preadipocytes. We now demonstrate that coculture of human...
متن کاملFibroblast growth factor 21 is elevated in metabolically unhealthy obesity and affects lipid deposition, adipogenesis, and adipokine secretion of human abdominal subcutaneous adipocytes
OBJECTIVE Serum concentrations of the hepatokine fibroblast growth factor (FGF) 21 are elevated in obesity, type-2 diabetes, and the metabolic syndrome. We asked whether FGF21 levels differ between subjects with metabolically healthy vs. unhealthy obesity (MHO vs. MUHO), opening the possibility that FGF21 is a cross-talker between liver and adipose tissue in MUHO. Furthermore, we studied the ef...
متن کاملIdentification of BMP and Activin Membrane-Bound Inhibitor (BAMBI) as a Potent Negative Regulator of Adipogenesis and Modulator of Autocrine/Paracrine Adipogenic Factors
Adipose tissue dysfunction underpins the association of obesity with type 2 diabetes. Adipogenesis is required for the maintenance of adipose tissue function. It involves the commitment and subsequent differentiation of preadipocytes and is coordinated by autocrine, paracrine, and endocrine factors. We previously reported that fibroblast growth factor-1 (FGF-1) primes primary human preadipocyte...
متن کاملCharacterization of the transcriptional and functional effects of fibroblast growth factor-1 on human preadipocyte differentiation.
We recently established that fibroblast growth factor (FGF)-1 promotes adipogenesis of primary human preadipocytes (phPA). In the current report, we have characterized the adipogenic effects of FGF-1 in phPA and also in a human PA strain derived from an individual with Simpson-Golabi-Behmel syndrome (SGBS PA), which exhibit an intrinsic capacity to differentiate with high efficiency. In further...
متن کاملNeuropilin 1 Mediates Keratinocyte Growth Factor Signaling in Adipose-Derived Stem Cells: Potential Involvement in Adipogenesis
Adipogenesis is regulated by a complex network of molecules, including fibroblast growth factors. Keratinocyte growth factor (KGF) has been previously reported to promote proliferation on rat preadipocytes, although the expression of its specific receptor, FGFR2-IIIb/KGFR, is not actually detected in mesenchymal cells. Here, we demonstrate that human adipose-derived stem cells (ASCs) show incre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 296 1 شماره
صفحات -
تاریخ انتشار 2009